Abstract
From our climate to the air we breathe, the ocean influences the world around us. Scientists are always looking for new ways to explore and study the ocean. One way we do this is by going on specially designed ships that allow us to study the deep sea, far from land. On our latest expedition aboard the Research Vessel Sally Ride, we went out 300 miles into the North Pacific Ocean for a week. We used some of the most important ocean science tools to catch tiny marine animals, collect water from some of the deepest depths, uncover mysteries of oceans past, and study how desert dust feeds marine animals today.
Why Do Scientists Go On Research Cruises?
When we think about the ocean, most of us think of crashing waves and animals like whales and dolphins. The ocean covers 70% of our planet’s surface and is incredibly important to the Earth and human life. It helps determine our weather and climate
Come aboard our expedition! Here is a look into our voyage on board the Research Vessel Sally Ride in the North Pacific Ocean. You can learn what we did at sea and how we used four important tools to study the ocean: the CTD, the multicorer, the tow, and aerosol
The CTD: Diving Into the Deep Ocean
The CTD is named after three things it measures. “C” is for conductivity
The water samplers are bottles that can be opened and closed deep in the ocean using electronics on the ship. The water samples allow us to measure what makes up ocean water and what lives in it. By filtering the water, we can look at particles of dust, DNA and nutrients (Figure 2B). Just for fun, we decorated styrofoam and sent it down to the deep ocean on the CTD! The weight of the ocean above it squeezed all of the air out of the styrofoam and made it a lot smaller (Figures 3A,B).
We use information from the CTD to answer important questions about what happens in the ocean. On our cruise, Linqing used water from the CTD to explore how ocean water moves around. Tricia used the CTD to look at how food is recycled in the ocean (Figure 3C). Kaycie used the CTD to study how microbes
Coring: Collecting Deep Ocean Mud
We have a time machine aboard. It does not carry us physically into the past, but we can use it to see what Earth was like long ago. Our time machine is a multicorer (Figure 2C). It collects mud from the seafloor that accumulated over the past centuries of ocean history [4]. The seafloor is constantly being rained on by mud carried into the sea by rivers, dust, pollen, and ash blown from land, and dead organisms that sink from the sea surface. All this stuff settles on the ocean bottom every hour of every day. As the centuries pass, the layers of mud thicken, preserving the history of fires, floods, and land life swept into the sea. The mud obtained by the multicorer tells the story of Earth’s past.
How does the multicorer work? It looks like a moon lander with four legs supporting a triangular structure attached to the ship with a cable. Heavy weights slowly shove eight plastic tubes into the seabed. The device is then hauled back to the ship with a cable. Each tube is sealed by spring-loaded doors to preserve the mud inside. The tubes of mud are called cores.
The layers in the cores capture information about how humans are changing the world. Looking back at what Earth was like long ago helps us predict how the Earth might change in the future. On our cruise, Cate is using cores to find out how much of the plastic that humans throw away ends up on the seafloor. She will compare the mud now to mud from decades ago, to see how it has changed. The cores are like a fat book of Earth’s history—a time machine to our past.
Tows: Catching Little Animals in Our Net
We do not care only about ocean mud and ocean water—we also care about ocean life! We use a net tow (Figure 2D) to catch zooplankton
The tow looks like a net that you might use to catch fish in a stream, but ours is so big that it takes a full team of scientists to use. Its holes are much smaller than a fishing net’s holes, so zooplankton will not float through. We hang the tow off the side of the ship into the water. We then move the boat forward, so the tow catches the zooplankton swimming through the water. After a few minutes, we bring the net back to the ship to see what we caught. We have a microscope on the ship to see what the tiny zooplankton look like. We also store some of the zooplankton to study back on land.
We collect zooplankton to answer all sorts of questions: How do plankton change over time? Are large or small plankton more common? What do plankton eat and where does it come from? On our cruise, Annie collected zooplankton to help answer some of these questions. Some of the zooplankton also end up in the Scripps’ Collections, where they will sit on shelves like library books alongside samples over 100 years old!
Aerosol Sampling: Collecting Dust From Ocean Air
Did you know that plankton get food from the sky? Although you might not be able to see it, there are billions of tiny pieces of rock floating around in the air all around you [6]. These little particles are called dust. Around 500 million tons of dust fall into the ocean each year, bringing with it nutrients like iron that many organisms, like phytoplankton
Onboard the ship, Emmet studied dust by sucking lots of air through a filter that catches the dust. To do this, he used a type of aerosol sampler called a Hi-Vol air sampler. Back on land in his lab, he can learn a lot about this dust. He hopes to learn more about the amazing ways that air transports nutrients around the world, even if we cannot see it with our eyes.
How Can I Go To Sea?
There are all sorts of ways to become a scientist who goes to sea. The scientists on our cruise are from five different countries. They studied various college subjects—chemistry, biology, physics, anthropology, and even art! Some of them have always wanted to study the ocean, and some did other things before becoming ocean scientists. We all worked really hard and prepared a lot so that we could deal with the challenges of being at sea. Some of the problems we overcame during our cruise were people getting sick, tools breaking, and experiments not working the way we expected. To get a taste of what it is like to be a scientist at sea, explore websites (like this one) about ocean science. You can also get out and explore near where you live, from a park to a stream to a city block. To become a scientist, you need a sense of wonder and you must pay attention to little details, write everything down, and notice changes that happen over time. Above all, have fun!
Glossary
Climate: ↑ The weather conditions of a place over a long period of time.
Aerosol: ↑ Small liquid or gas particles suspended in a gas. Here, this gas is air.
Conductivity: ↑ How easy it is for electricity to pass through a material. In the ocean, we use conductivity to measure how salty seawater is.
Microbes: ↑ Living things that are too small to see with just your eyes.
Zooplankton: ↑ A category of ocean animals that mostly drift along with ocean currents. Zooplankton include everything from big jellyfish to tiny larvae.
Phytoplankton: ↑ Microscopic organisms that live in water and get their energy from the sun, just like plants do on land.
Atmosphere: ↑ The layer of gases that surround our planet.
Conflict of Interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Acknowledgments
The authors thank the science party and crew of SR2215 for their invaluable assistance and contributions. Funding for this research cruise was provided by the UC Ship Funds program. Additional funding supporting research completed on this research cruise was provided by the National Sciences Foundation, award number 2126668.
Author Contributions
TL, EN, DZ, RV, and RN conceptualized and planned this work. EN and DC created figures. All authors wrote and revised sections of the manuscript.
References
[1] ↑ Bigg, G. R., Jickells, T. D., Liss, P. S., and Osborn, T. J. 2003. The role of the oceans in climate. Int. J. Climatol. 23:1127–59. doi: 10.1002/joc.926
[2] ↑ Food and Agriculture Organization of the United Nations. 2022. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome: FAO. doi: 10.4060/cc0461en
[3] ↑ White, M., Mohn, C., and Kiriakoulakis, K. 2016. “Environmental sampling”, in Biological Sampling in the Deep Sea, eds M. R. Clark, M. Consalvey, and A. A. Rowden (Hoboken, NJ: John Wiley and Sons), 57–79. doi: 10.1002/9781118332535
[4] ↑ Tuit, C. B., and Wait, A. D. 2020. A review of marine sediment sampling methods. Environ. Forensics. 21:291–309. doi: 10.1080/15275922.2020.1771630
[5] ↑ Sameoto, D., Wiebe, P., Runge, J., Postel, L., Dunn, J., Miller, C., et al. 2000. “Collecting zooplankton”, in ICES Zooplankton Methodology Manual, eds R. Harris, P. Wiebe, J. Lenz, H. R. Skjoldal, and M. Huntler (Cambridge: Academic Press), 55–81. doi: 10.1016/B978-0-12-327645-2.X5000-2
[6] ↑ Fitzgerald, J. W. 1991. Marine aerosols: a review. Atmos. Environ. A. Gen. Top. 25:533–45. doi: 10.1016/0960-1686(91)90050-H